
Assembler Language Assembler Language
"Boot Camp""Boot Camp"

Part 1 - Numbers and Part 1 - Numbers and
Basic ArithmeticBasic Arithmetic

SHARE 116 in AnaheimSHARE 116 in Anaheim
February 27 - March 3, 2011February 27 - March 3, 2011

IntroductionIntroduction

Who are we?

John Ehrman, IBM Software Group

John Dravnieks, IBM Software Group

Dan Greiner, IBM Systems & Technology Group

IntroductionIntroduction

Who are you?
An applications programmer who needs to write
something in mainframe assembler?
An applications programmer who wants to
understand z/Architecture so as to better
understand how HLL programs work?
A manager who needs to have a general
understanding of assembler?

Our goal is to provide for professionals an
introduction to the z/Architecture assembler
language

IntroductionIntroduction

These sessions are based on notes from a
course in assembler language at Northern
Illinois University

The notes are in turn based on the textbook,
Assembler Language with ASSIST and
ASSIST/I by Ross A Overbeek and W E
Singletary, Fourth Edition, published by
Macmillan

1-4

IntroductionIntroduction
The original ASSIST (Assembler System for
Student Instruction and Systems Teaching)
was written by John Mashey at Penn State
University

ASSIST/I, the PC version of ASSIST, was
written by Bob Baker, Terry Disz and John
McCharen at Northern Illinois University

IntroductionIntroduction
Both ASSIST and ASSIST/I are in the public
domain, and are compatible with the
System/370 architecture of about 1975 (fine
for beginners)

Everything we discuss here works the same
in z/Architecture

Both ASSIST and ASSIST/I are available at
http://www.kcats.org/assist

IntroductionIntroduction

ASSIST-V is also available now, at
http://www.kcats.org/assist-v

Other materials described in these sessions
can be found at the same site, at
http://www.kcats.org/share

Please keep in mind that ASSIST, ASSIST/I,
and ASSIST-V are not supported by Penn
State, NIU, NESI, or any of us

IntroductionIntroduction

Other references used in the course at NIU:
Principles of Operation (PoO)
System/370 Reference Summary
High Level Assembler Language Reference

Access to PoO and HLASM Ref is normally
online at the IBM publications web site

Students use the S/370 "green card" booklet
all the time, including during examinations
(SA22-7209)

5-8

Our Agenda for the WeekOur Agenda for the Week
Assembler Boot Camp (ABC) Part 1: Numbers
and Basic Arithmetic (Monday - 11:00 a.m.)

ABC Part 2: Instructions and Addressing
(Monday - 1:30 p.m.)

ABC Part 3: Assembly and Execution;
Branching (Tuesday - 1:30 p.m.)

ABC Lab 1: Hands-On Assembler Lab Using
ASSIST/I (Tuesday - 6:00 p.m.)

Our Agenda for the WeekOur Agenda for the Week
ABC Part 4: Program Structures; Arithmetic
(Wednesday - 1:30 p.m.)

ABC Lab 2: Hands-On Assembler Lab Using
ASSIST/I (Wednesday - 6:00 p.m.)

ABC Part 5: Decimal and Logical Instructions
(Thursday - 9:30 a.m.)

Agenda for this SessionAgenda for this Session

Decimal, Binary and Hexadecimal Numbers
and Conversions

Main Storage Organization and Signed Binary
Numbers

Integer Arithmetic and Overflow

Getting Started with ASSIST/I

The Big Question:The Big Question:
"Why Learn Assembler "Why Learn Assembler
Language?"Language?"
"People who are more than casually interested
in computers should have at least some idea of
what the underlying hardware is like. Otherwise
the programs they write will be pretty weird."

 Donald E Knuth,
 The Art of Computer Programming,
 Preface to Fascicle Number One (MMIX)

9-12

Decimal, Binary and Decimal, Binary and
Hexadecimal Numbers Hexadecimal Numbers

and Conversionsand Conversions

 In Which We Learn to Count In Which We Learn to Count
All Over Again All Over Again

Why Bother with Binary?Why Bother with Binary?

Nearly all computers today use binary as the
internal "language"

We need to understand this language to fully
understand instructions and data
Even decimal numbers are represented internally
in binary!

Binary numbers can get very long, so we use
hexadecimal ("hex") as a shorthand

A hex digit is simply a group of four binary digits
(bits)

Counting in Bases 10, 2, and 16Counting in Bases 10, 2, and 16
Dec Bin Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7

Dec Bin Hex
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10

Numbers in Different BasesNumbers in Different Bases
Consider how we write numbers in base 10,
using the digits 0 - 9:

83210 = 80010 + 3010 + 210

 = 8 x 102 + 3 x 101 + 2 x 100

For numbers in base 2 we need only 0 and 1:
11012 = 10002 + 1002 + 00 + 1
 = 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20

But because it requires less writing, we
usually prefer base 16 to base 2

13-16

Caution!Caution!

The value of a number may be ambiguous
when the base isn't indicated

1011 = ?10

10112 = 1110

101116 = 411310

The base will usually be clear from the
context, but will otherwise be provided

Converting Binary & Hexadecimal Converting Binary & Hexadecimal
to Decimalto Decimal
10112 = 1 x 23 = 1 x 8 = 8

+ 0 x 22 = 0 x 4 = 0
+ 1 x 21 = 1 x 2 = 2
+ 1 x 20 = 1 x 1 = 1
 11

A6116 = 10 x 162 = 10 x 256 = 2560
 + 6 x 161 = 6 x 16 = 96
 + 1 x 160 = 1 x 1 = 1
 2657

Note: numbers without subscript are base 10

Converting Decimal to Binary & Converting Decimal to Binary &
HexadecimalHexadecimal

To convert a decimal number n to base b
1. Divide n by b, giving quotient q and remainder r
2. Write r as the rightmost digit, or as the digit to

the left of the last one written
3. If q is zero, stop; otherwise set n = q and go

back to Step 1.

Note that each digit will be in the range 0 to
b-1

Example: Convert 123Example: Convert 1231010 to Base 16to Base 16

123 / 16 = 7 with remainder 11, so the
rightmost digit is B (why?)

7 / 16 = 0 with remainder 7, so the next digit
to the left is 7

Since quotient is 0, stop

Result is 12310 = 7B16

A similar process shows 12310 = 11110112

17-20

Conversions Between Bin and HexConversions Between Bin and Hex
These are the easiest of the conversions,
since 16 = 24 and we can convert by groups of
digits

To convert from binary to hexadecimal
1. Starting at the right, separate the digits into

groups of four, adding any needed zeros to the
left of the leftmost digit so that all groups have
four digits

2. Convert each group of four binary digits to a
hexadecimal digit

Conversions Between Bin and HexConversions Between Bin and Hex

So to convert 101101 to hex,
1. Group the digits and add zeros: 0010 1101
2. Convert to hex digits: 2 D

To convert from hexadecimal to binary,
simply reverse the algorithm

So 2C516 = 0010 1100 0101 = 10110001012

 2 C 5

Addition and subtraction of unsigned numbers
is performed in hexadecimal and binary just
the same as it is in decimal, with carries and
borrows

We normally use signed numbers, so we
won't dwell on unsigned numbers

Arithmetic with Unsigned NumbersArithmetic with Unsigned Numbers
 Addition Table - Base 10
 + 0 1 2 3 4 5 6 7 8 9
 |---------------------------------------
 0 | 0 1 2 3 4 5 6 7 8 9
 1 | 1 2 3 4 5 6 7 8 9 0+c
 2 | 2 3 4 5 6 7 8 9 0+c 1+c
 3 | 3 4 5 6 7 8 9 0+c 1+c 2+c
 4 | 4 5 6 7 8 9 0+c 1+c 2+c 3+c
 5 | 5 6 7 8 9 0+c 1+c 2+c 3+c 4+c
 6 | 6 7 8 9 0+c 1+c 2+c 3+c 4+c 5+c
 7 | 7 8 9 0+c 1+c 2+c 3+c 4+c 5+c 6+c
 8 | 8 9 0+c 1+c 2+c 3+c 4+c 5+c 6+c 7+c
 9 | 9 0+c 1+c 2+c 3+c 4+c 5+c 6+c 7+c 8+c

Arithmetic with Unsigned NumbersArithmetic with Unsigned Numbers

21-24

 Addition Tables
 Base 2 Base 16
 + 0 1 + 0 1 2 ... E F
 |------- |-----------------------
 0 | 0 1 0 | 0 1 2 ... E F
 1 | 1 0+c 1 | 1 2 3 ... F 0+c
 2 | 2 3 4 0+c 1+c
 ...
 B | B C D 9+c A+c
 C | C D E A+c B+c
 D | D E F B+c C+c
 E | E F 0+c .. C+c D+c
 F | F 0+c 1+c .. D+c E+c

Arithmetic with Unsigned NumbersArithmetic with Unsigned Numbers

 1101 <--- carries 11110 <--- carries
 FCDE 10110
+ 9A05 + 1011
 196E3 100001

 BD+c <--- borrows 0110+c <--- borrows
 FCDE 111000
 -9AE5 - 10011
 61F9 100101

Arithmetic with Unsigned NumbersArithmetic with Unsigned Numbers

Main Storage Main Storage
Organization and Organization and

Signed Binary NumbersSigned Binary Numbers

Main Storage OrganizationMain Storage Organization
In order to understand how signed numbers
are represented in a binary computer, we need
to understand memory organization

Abstractly, a binary digit (or bit) can be
represented by any 2-state system: on-off,
true-false, etc.

A computer's memory is simply a collection of
billions of such systems implemented using
electronic switches

25-28

Main Storage OrganizationMain Storage Organization
Memory is organized by grouping eight bits
into a byte, then assigning each byte its own
identifying number, or address, starting with
zero

Bytes are then aggregated into words (4
bytes), halfwords (2 bytes) and doublewords
(8 bytes)

One byte = eight bits
One word = four bytes = 32 bits

Main Storage OrganizationMain Storage Organization
Typically, each of these aggregates is aligned
on an address boundary which is evenly
divisible by its size in bytes

So, a word (32 bits) is aligned on a 4-byte
boundary (addresses 0, 4, 8, 12, 16, 20, etc.)

Remember, memory addresses refer to
bytes, not bits or words

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

Representing unsigned binary integers was
fairly simple, but how can we include a sign?

There are three ways we might represent
signed integers, using a single bit as the sign
(customarily the leftmost bit)

Signed-magnitude
Ones' complement
Two's complement

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

Signed-magnitude is the most familiar (+17,
-391) and we will see later how this is used in
z/Architecture

Allocating an extra bit for the sign,
since 910 = 10012, we would write

 +9 as 0 10012 and

 -9 as 1 10012

29-32

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

The ones' complement of a number is found
by replacing each 1 with 0 and each 0 with 1

If we use one bit for the sign, then since 910 is
10012, we would write

 +9 as 0 10012 and

 -9 as 1 01102

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

The two's complement representation is
formed by taking the ones' complement and
adding 1

In this notation, again using one bit for the
sign, we write

 +9 as 0 10012 and

 -9 as 1 01112

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

In z/Architecture, a negative binary integer is
represented by the two's complement of its
positive value

Note that zero is its own complement in this
representation (no +0 or -0), since:
Zero = 00000000 00000000 00000000
00000000
1s Compl = 11111111 11111111 11111111 11111111
Plus 1 = 1
Result = 00000000 00000000 00000000 00000000

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

In a 32- bit fullword, signed integers are
represented by using the first bit as a sign,
followed by 31 bits of significance

sbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb

It is also possible to have signed integers
represented as 8-bit bytes and 16-bit
halfwords as well as 64-bit doublewords

33-36

Representation of Signed Binary Representation of Signed Binary
IntegersIntegers

A fullword can contain non-negative integers
(with sign bit = 0) in the range
 0 <-> +231-1
Negative integers (with sign bit = 1) in the
range
 -231+1 <-> -1
are formed by taking the two's complement of
the number's absolute value

 Negative integer -231 is represented by
1000...0000 or, in hex, 80000000

Representation of Signed Binary Representation of Signed Binary
Integers: ExamplesIntegers: Examples

 N.B. -231 is not the two's complement of any
positive integer

In two's complement representation
 +1 = 00000000 00000000 00000000 00000001
 -1 = 11111111 11111111 11111111 11111111

Or, in the more commonly used hexadecimal
 +1 = 00000001
 -1 = FFFFFFFF

Integer Arithmetic Integer Arithmetic
and Overflowand Overflow

Let's look at examples of addition and
subtraction using signed numbers in two's
complement. These examples use only 4 bits,
not 32, with the leftmost bit as sign.
+3 = 0 011
+2 = 0 010
+5 0 101

+3 = 0 011
-2 = 1 110 (Two's complement of 0 010)
+1 0 001 (The carry out is ignored)

Arithmetic with Signed NumbersArithmetic with Signed Numbers

37-40

Arithmetic with Signed NumbersArithmetic with Signed Numbers

Now, how about -3 plus +2

Notice that the sign is correct each time, and
the result is in two's complement notation

 -3 = 1 101
 +2 = 0 010
 -1 1 111

Arithmetic with Signed NumbersArithmetic with Signed Numbers

Subtraction is performed by adding the two's
complement of the subtrahend to the
minuend. So +3 - +2 = +3 + (-2).

 +3 +3 <- minuend
 - +2 becomes + -2 <- subtrahend
 ---- ----
 +1 +1

Computer arithmetic using 32-bit fullwords is
a bit more complex, and is always shown in
hex. Also, we will no longer display a
separate sign bit (it will be part of the leftmost
hex digit):

 00000011 AE223464 (what sign?)
+0000010B +5FCA5243
 0000011C 0DEC86A7

Arithmetic with Signed NumbersArithmetic with Signed Numbers
Subtraction is performed by adding the two's
complement

Carries out of the sign position are ignored
(results are correct anyway)

 F89ABCDE F89ABCDE
-6D4AFBC0 = +92B50440
 8B4FC11E (is this correct?)

Arithmetic with Signed NumbersArithmetic with Signed Numbers

41-44

Overflow - Why Worry?Overflow - Why Worry?

Internal data is limited in size
Adding two big numbers can produce a number
that is "too big" - then what?

The machine records an overflow condition
Either the Condition Code (CC) is set (more on
this later) or a Program Interrupt occurs
The result often has the wrong sign

Your programs will probably have to take
steps to avoid or handle overflow

OverflowOverflow
What if two large numbers are added and the
result is greater than 231-1 (or less than -231)?

And how can we tell if this happened?

In order to understand this, we will again
demonstrate with our very small "words" of four
bits, the first of which is the sign

These "4-bit words" can handle integers in the
range from -8 to +7 (1 000 to 0 111)

OverflowOverflow
Now let's see what happens when we try to
add +5 to +4 (we'll do this in binary, using
our four-bit words).

Overflow will occur since the result is greater
than +7.

OverflowOverflow
Overflow is detected by checking the carry
into the sign position and the carry out of the
sign position

If they are not equal, overflow occurred and
the result is invalid.

45-48

 Out In [not equal, so overflow occurred]
 \ /
 01 00 <-- carries
 0 101 = +5
 0 100 = +4
 1 001 = -7 (invalid due to overflow)

The program may optionally take action on
overflow, but it normally should since the result is
invalid

OverflowOverflow OverflowOverflow

But be very careful! The mainframe is a
binary computer, not hexadecimal, so the
check for overflow must be done using the
binary representation - that is, we must look
at bits, not hex digits

So, if we add as follows...
 1111...
 D13BCF24 D = 1101...
 +F3C12B97 F = 1111...
 1100...

OverflowOverflow

... we can see that overflow does not occur (1
in and 1 out)

But if we make the mistake of checking the
hex digits, we see what looks like overflow

 10
 D1...
 +F3...

Getting Started With Getting Started With
ASSIST/IASSIST/I

49-52

ASSIST/I FeaturesASSIST/I Features
ASSIST/I is an integrated assembler and
instruction interpreter, plus a text editor and
interactive debugger

There are built-in functions (X-instructions) for
I/O and data conversion

Program tracing lets you watch "everything"
happen

ASSIST/I FeaturesASSIST/I Features
It is a useful tool for getting started and
"tinkering" on a PC without needing any
host-system access

A User Guide is included in the "Starter Kit"
handout

And it's free!

ASSIST/I LimitationsASSIST/I Limitations

ASSIST/I supports only an older, less-rich
instruction set

Modern assembler features are missing

Programming style may be less robust than
desired

ASSIST/I LimitationsASSIST/I Limitations
Text editor functions are rather awkward

It may be easier to use a simple PC editor
such as Notepad

System macros aren't available

53-56

Getting Started with ASSIST/IGetting Started with ASSIST/I
Easiest: run everything from the CD or hard
drive

Change your disk drive to D: (or other
appropriate drive letter) and your working
directory to \BootAsst\
Enter CAS, and follow the prompts to run
program DEMOA.ASM
Later, we'll step through its execution and
show how to create a .PRT file

Try some of the other DEMO programs

57-60

